Elastic contact mechanics: percolation of the contact area and fluid squeeze-out.

نویسندگان

  • B N J Persson
  • N Prodanov
  • B A Krick
  • N Rodriguez
  • N Mulakaluri
  • W G Sawyer
  • P Mangiagalli
چکیده

The dynamics of fluid flow at the interface between elastic solids with rough surfaces depends sensitively on the area of real contact, in particular close to the percolation threshold, where an irregular network of narrow flow channels prevails. In this paper, numerical simulation and experimental results for the contact between elastic solids with isotropic and anisotropic surface roughness are compared with the predictions of a theory based on the Persson contact mechanics theory and the Bruggeman effective medium theory. The theory predictions are in good agreement with the experimental and numerical simulation results and the (small) deviation can be understood as a finite-size effect. The fluid squeeze-out at the interface between elastic solids with randomly rough surfaces is studied. We present results for such high contact pressures that the area of real contact percolates, giving rise to sealed-off domains with pressurized fluid at the interface. The theoretical predictions are compared to experimental data for a simple model system (a rubber block squeezed against a flat glass plate), and for prefilled syringes, where the rubber plunger stopper is lubricated by a high-viscosity silicon oil to ensure functionality of the delivery device. For the latter system we compare the breakloose (or static) friction, as a function of the time of stationary contact, to the theory prediction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Static or breakloose friction for lubricated contacts: the role of surface roughness and dewetting.

We present experimental data for the static or breakloose friction for lubricated elastomer contacts, as a function of the time of stationary contact. Due to fluid squeeze-out from the asperity contact regions, the breakloose friction force increases continuously with the time of stationary contact. We consider three different cases: (a) PDMS rubber balls against flat smooth glass surfaces, (b)...

متن کامل

Self-affine elastic contacts: percolation and leakage.

We study fluid flow at the interfaces between elastic solids with randomly rough, self-affine surfaces. We show by numerical simulation that elastic deformation lowers the relative contact area at which contact patches percolate in comparison to traditional approaches to seals. Elastic deformation also suppresses leakage through contacts even far away from the percolation threshold. Reliable es...

متن کامل

Squeeze-out of branched alkanes on graphite.

We study squalane and heptamethylnonane (HMN) confined between a conducting atomic force microscope tip and a graphite surface. Solvation layering occurs for both liquids but marked differences in the squeeze out mechanics are observed for ordered or disordered monolayers. The squalane monolayer at 25 degrees C is an ordered solid, as verified by direct imaging, and the squeeze out can be model...

متن کامل

Single-asperity contact mechanics with positive and negative work of adhesion: Influence of finite-range interactions and a continuum description for the squeeze-out of wetting fluids

In this work, single-asperity contact mechanics is investigated for positive and negative work of adhesion Δγ. In the latter case, finite-range repulsion acts in addition to hard-wall constraints. This constitutes a continuum model for a contact immersed in a strongly wetting fluid, which can only be squeezed out in the center of the contact through a sufficiently large normal load F N. As for ...

متن کامل

Finite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy

The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European physical journal. E, Soft matter

دوره 35 1  شماره 

صفحات  -

تاریخ انتشار 2012